This document contains the study-level personality scale moderation in the meta-analysis of the surivival models, using time since baseline as the metric of interest and neuroticism by conscientiousness as the predictor of interest.
Estimate | SE | Z | p | CI lower | CI upper | |
---|---|---|---|---|---|---|
Intercept (NEO-PI-R) | -0.02 | 0.04 | -0.51 | .612 | -0.09 | 0.05 |
IPIP or Goldberg | 0.07 | 0.05 | 1.27 | .204 | -0.04 | 0.17 |
BFI | 0.00 | 0.04 | -0.08 | .938 | -0.09 | 0.08 |
MIDI | 0.00 | 0.04 | -0.03 | .974 | -0.08 | 0.08 |
NEO-FFI | 0.03 | 0.05 | 0.76 | .446 | -0.05 | 0.12 |
The following packages were used to generate this table:
library(papaja)
library(tidyverse)
library(metafor)
library(knitr)
library(kableExtra)
library(here)
The files needed for this table are available at osf.io/mzfu9 in the Individual Study Output folder.
First we load the individual study analysis objects.
study.names = c("EAS", "HRS", "LBC", "LBLS", "MAP", "MAS", "MIDUS", "NAS", "OATS", "ROS", "SLS", "WLS")
lapply(here(paste0("mortality/study output/", study.names, "_survival_output.Rdata")), load, .GlobalEnv)
meta.data.time <- data.frame()
n <- 0
for(i in study.names){
n <- n+1
x <- get(paste0(i, "_survival_output"))
meta.data.time[n, "study"] <- i
meta.data.time[n, "coef"] <- x$time$model2$coef["z.neur:z.con", "coef"]
meta.data.time[n, "se"] <- x$time$model2$coef["z.neur:z.con", "se(coef)"]
meta.data.time[n, "n"] <- x$time$model2$ntotal
meta.data.time[n, "n_died"] <- x$descriptives$died.tab["1"]
meta.data.time[n, "personality_q"] <- x$metadata$personality_q
}
# set personality questionnare information.
# We divide questionnaires into five categories:
# NEO-PI-R (baseline), NEO-FFI, BFI, IPIP and MIDI.
# The Normative Aging Study (NAS) was the only to use the Goldberg adjectives; this study was excluded from personality moderations
# similarly, the EAS was the only one to use the IPIP, and was similarly excluded
neo_pi_r = c("LBLS", "SLS", "OATS", "MAS")
neo_ffi = c("ILSE", "ROS", "MAP", "LBC")
ipip = c("EAS")
meta.data.time$personality_q[meta.data.time$study %in% neo_pi_r] = "NEO-PI-R"
meta.data.time$personality_q[meta.data.time$study %in% neo_ffi] = "NEO-FFI"
meta.data.time$personality_q[meta.data.time$study %in% ipip] = "IPIP"
meta.data.time$personality_q = gsub("goldberg", "", meta.data.time$personality_q)
meta.data.time$personality_q = gsub("IPIP", "", meta.data.time$personality_q)
meta.data.time$personality_q = factor(meta.data.time$personality_q)
meta.data.time$personality_q = relevel(meta.data.time$personality_q,
ref = "NEO-PI-R")
meta.data.time$study = gsub("LBC", "LBC1936", meta.data.time$study)
mod.results.time <- rma(yi = coef,
sei = se,
ni = n,
measure = "RR",
slab = study,
mods = ~personality_q,
data = meta.data.time)
coef(summary(mod.results.time)) %>%
mutate(pval = printp(pval),
var = c("Intercept (NEO-PI-R)", "IPIP or Goldberg", "BFI", "MIDI", "NEO-FFI")) %>%
dplyr::select(ncol(.), 1:(ncol(.)-1)) %>%
kable(., booktabs = TRUE, escape = FALSE, digits = 2,
col.names = c(" ", "Estimate", "SE", "Z", "p", "CI lower", "CI upper"),
row.names = F) %>%
kable_styling()