This document summarizes the analyses which test for between study moderation.
Variable | b | CI_l | CI_u | p | b | CI_l | CI_u | p | b | CI_l | CI_u | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Diabetes | ||||||||||||
intrcpt | -0.04 | -0.14 | 0.05 | .354 | -0.01 | -0.11 | 0.09 | .800 | -0.02 | -0.12 | 0.08 | .668 |
personality_q | 0.01 | -0.13 | 0.16 | .846 | 0.00 | -0.15 | 0.16 | .952 | 0.02 | -0.14 | 0.18 | .833 |
personality_qBFI | 0.05 | -0.07 | 0.17 | .401 | 0.03 | -0.09 | 0.16 | .598 | 0.04 | -0.09 | 0.17 | .512 |
personality_qMIDI | 0.06 | -0.03 | 0.16 | .189 | 0.03 | -0.07 | 0.14 | .548 | 0.04 | -0.06 | 0.15 | .421 |
personality_qNEO-FFI | 0.01 | -0.12 | 0.14 | .880 | -0.01 | -0.15 | 0.13 | .885 | 0.00 | -0.14 | 0.14 | .969 |
Hypertension | ||||||||||||
intrcpt | -0.04 | -0.11 | 0.02 | .196 | -0.03 | -0.09 | 0.04 | .393 | -0.03 | -0.09 | 0.04 | .397 |
personality_q | -0.02 | -0.14 | 0.11 | .779 | -0.03 | -0.15 | 0.09 | .637 | -0.04 | -0.16 | 0.08 | .549 |
personality_qBFI | 0.10 | 0.01 | 0.20 | .027 | 0.07 | 0.00 | 0.15 | .062 | 0.07 | 0.00 | 0.15 | .063 |
personality_qMIDI | 0.05 | -0.03 | 0.13 | .258 | 0.01 | -0.05 | 0.08 | .697 | 0.01 | -0.06 | 0.08 | .721 |
personality_qNEO-FFI | 0.06 | -0.04 | 0.16 | .224 | 0.04 | -0.05 | 0.13 | .404 | 0.04 | -0.05 | 0.13 | .403 |
Heart Disease | ||||||||||||
intrcpt | -0.09 | -0.17 | 0.00 | .047 | -0.08 | -0.18 | 0.01 | .093 | -0.09 | -0.19 | 0.01 | .070 |
personality_q | 0.16 | 0.03 | 0.29 | .019 | 0.16 | 0.02 | 0.30 | .023 | 0.18 | 0.04 | 0.32 | .011 |
personality_qBFI | 0.04 | -0.07 | 0.15 | .498 | 0.03 | -0.08 | 0.15 | .579 | 0.04 | -0.07 | 0.16 | .463 |
personality_qMIDI | 0.10 | 0.01 | 0.19 | .034 | 0.08 | -0.02 | 0.18 | .122 | 0.09 | -0.01 | 0.19 | .083 |
personality_qNEO-FFI | 0.07 | -0.04 | 0.19 | .223 | 0.08 | -0.05 | 0.20 | .238 | 0.08 | -0.05 | 0.21 | .218 |
The following packages were used to generate this table:
library(tidyverse)
library(metafor)
library(knitr)
library(kableExtra)
library(papaja)
library(here)
First we load and summarize the diabetes data.
load(here("chronic/meta output/diabetes_cross_mods.Rdata"))
diabetes.models = data.frame(model = c("mod1", "mod2", "mod3"))
diabetes.models$output = list(mods.p.mod1, mods.p.mod2, mods.p.mod3)
summary = diabetes.models %>%
mutate(summary = map(output, function(x) coef(summary(x)))) %>%
mutate(summary = map(summary, ~mutate(., var = rownames(.)))) %>%
dplyr::select(-output) %>%
unnest() %>%
mutate(outcome = "diabetes")
Next we load and summarize the high blood pressure data.
rm(list = setdiff(ls(), "summary"))
load(here("chronic/meta output/hbp_cross_mods.Rdata"))
hbp.models = data.frame(model = c("mod1", "mod2", "mod3"))
hbp.models$output = list(mods.p.mod1, mods.p.mod2, mods.p.mod3)
summary = hbp.models %>%
mutate(summary = map(output, function(x) coef(summary(x)))) %>%
mutate(summary = map(summary, ~mutate(., var = rownames(.)))) %>%
dplyr::select(-output) %>%
unnest() %>%
mutate(outcome = "hbp") %>%
full_join(summary)
Finally we load and summarize the heart condition data.
rm(list = setdiff(ls(), "summary"))
load(here("chronic/meta output/heart_cross_mods.Rdata"))
heart.models = data.frame(model = c("mod1", "mod2", "mod3"))
heart.models$output = list(mods.p.mod1, mods.p.mod2, mods.p.mod3)
summary = heart.models %>%
mutate(summary = map(output, function(x) coef(summary(x)))) %>%
mutate(summary = map(summary, ~mutate(., var = rownames(.)))) %>%
dplyr::select(-output) %>%
unnest() %>%
mutate(outcome = "heart") %>%
full_join(summary)
summary %>%
dplyr::select(-se, -zval) %>%
gather("key", "value", -model, -var, -outcome) %>%
unite("key", "model", "key", sep="_") %>%
spread("key", "value") %>%
arrange(outcome, var) %>%
dplyr::select(var,
mod1_estimate, mod1_ci.lb, mod1_ci.ub, mod1_pval,
mod2_estimate, mod2_ci.lb, mod2_ci.ub, mod2_pval,
mod3_estimate, mod3_ci.lb, mod3_ci.ub, mod3_pval) %>%
mutate(mod1_pval = printp(mod1_pval),
mod2_pval = printp(mod2_pval),
mod3_pval = printp(mod3_pval)) %>%
kable(., digits = 2, booktabs = T, escape = FALSE,
col.names = c("Variable", rep(c("b", "CI_l", "CI_u", "p"), 3))) %>%
kable_styling() %>%
add_header_above(c(" " = 1, "Model 1" = 4, "Model 2" = 4, "Model 3" = 4)) %>%
group_rows("Diabetes", 1, 5) %>%
group_rows("Hypertension", 6, 10) %>%
group_rows("Heart Disease", 11, 15)